

IMPLEMENTING A PORT KNOCKING
SYSTEM IN C

An Honors Thesis submitted in partial fulfillment
of the requirements for Honors Studies in

Physics

By

Matt Doyle

2004
Physics

J. William Fulbright College of Arts and Sciences
The University of Arkansas

 2

Acknowledgements

 I would like to thank Dr. Craig Thompson of the Department of Computer

Science and Computer Engineering, Dr. Gay Stewart of the Physics Department, and Dr.

John Stewart of the Physics Department. They have provided me with endless support

over the past years, without which my degree and this project would not have been

possible.

 3

Table of Contents

1.0: Introduction 5

1.1: Basics of Network Communication 6

1.2: Port Knocking 7

2.0: Goals 8

3.0: Implementation 9

3.1: The Client, knockc 9

3.2: The Server, knockd 10

4.0: Analysis 13

5.0: Future Work 16

6.0: Conclusion 18

Appendix A: Source Code for knockc.c 20

Appendix B: Source Code for knockd.c 24

Appendix C: The Extended ASCII Character Chart 33

Appendix D: Related Work 35

Bibliography 36

 4

Abstract

 Modern computer security typically takes a multi-layered approach in which

the desired security level for a computer system is reached by combining a number of

different security methods. While these methods, taken individually, are often not enough

to provide thorough defenses, when implemented together, they can form a significant

deterrent against malicious users.

 This thesis explores the concept of port knocking, a relatively unknown

method for augmenting the security of computer systems. It begins with a very basic

primer on host-to-host communication over a computer network, followed by an

introduction to the concept of port knocking and a description of the goals of this project.

This thesis then describes in detail the primary goal of the project: the design and

implementation of a port knocking system in C. Each component of the project is

described in detail, with source code examples included for clarity. The thesis concludes

with a critical look at the accomplishments and shortcomings of the project in its current

state, as well as a thorough discussion of suggested future work.

 5

1.0: Introduction

 In times of revolution, people often find themselves confronted with

dramatic changes, bold new ideas, and new problems for which they must find solutions.

Mankind is currently in the midst of one of the most significant and fascinating

revolutions yet: the proliferation of computer technology. There are likely few who would

fail to recognize the pervasiveness of computers in our present-day society. Indeed,

computer technology has become almost a necessity for maintaining our current way of

life. It is this very dependency that holds the greatest threat of computer technology: the

sudden lack of it.

 Recent times have seen the advent of a number of devastating computer

viruses, worms, and exploits. With attacks such as these on the rise, computer security is

becoming an area of research vitally important to protecting our way of life. Typically,

system security relies on a multi-layered approach, utilizing a number of different

security methods simultaneously in order to defend against malicious activity. The

decision of how secure to make a system is often a balancing act, for the cost of increased

security is often decreased usability. A prime example of this is the firewall [2].

 The purpose of a firewall is analogous to that of a bouncer in a club. The

firewall, acting on a given set of rules, decides what network traffic is allowed into a

system, and what traffic is denied. The most straightforward way to keep out all malicious

traffic is easily implemented: just reject all incoming network data. For the club owner, a

policy such as this would certainly prevent fights from breaking out inside, but it would

also result in a lot of angry patrons outside and not many drinks being sold at the bar.

Likewise, firewall rules such as these will make a system highly secure, but completely

inaccessible to anyone who is not physically nearby. The most beneficial outcome for the

system administrator would be to implement a system that would provide a high level of

 6

security, but manage to stay flexible enough to allow desired traffic through when

needed. This is where the concept of port knocking becomes relevant.

1.1: Basics of Network Communication

 In order to accurately describe the concept of port knocking, some

groundwork must first be laid. Communication between two networked computers

requires, at the very least, two very basic pieces of information: an IP address and a port

number. An IP address is a value similar to a postal address. It tells where a specific

computer can be found on the internet. With an IP address, we can be sure that

information will reach the machine for which it is destined. Once there, the remote

machine must determine where the data must go, that is, which application it is intended

for. It does this with the second value, the port number. Going back to the postal analogy,

port numbers can be compared to the “care of” field in a postal address. The port number

indicates which application should process the data that has been sent. Many common

applications have a standard port number with which they communicate. Webservers

typically use port 80 (HTTP). Secure Shell sessions use port 22 (SSH). When programs

such as these are running on a remote machine, these ports that they use are “open,”

meaning that they are ready to begin accepting data. Ports which do not have a program

currently associated with them are “closed.”

 Firewall software regulates inbound and outbound network traffic based on

these port numbers. Network data, upon arrival at its destination machine, must first pass

through the firewall (remember the bouncer analogy) before it is sent on to its destination

port. In this manner, even if a Secure Shell server is active and awaiting data on port 22,

if the firewall is configured to deny all traffic on port 22, no communication will be

possible with this machine via Secure Shell and port 22 will appear to be closed.

 7

 At first, closing off ports may seem undesirable, but every program listening

on an open port can potentially pose a security threat to the system. Most of the time, the

vulnerabilities that hackers exploit are due to programs running on open ports [8]. By

sending these programs “bad data,” hackers can cause a range of problems to occur on

these systems, ranging from program crashes to arbitrary code execution [8]. Hence, the

open ports on a system are only as secure as the programs using those ports. Port

knocking provides a simple yet effective solution to this problem. It enables the computer

to pass traffic to these ports when needed and deny it the rest of the time, all the while

keeping the entire process secure against those who might be watching.

1.2: Port Knocking

 During the Prohibition Era of the 20th century, it was not uncommon for

alcohol to be provided within the confines of highly secretive speakeasies. Owners of

such establishments would often enforce a strict set of rules at the door. On one hand,

they would want to let in patrons who would provide them with profits; on the other hand,

they also wanted to keep out law enforcement officers who sought to shut down their

operations. In some instances, policy such as this was implemented by means of a “secret

knock.” If a patron knocked on the door in a certain way, they would be let in, for it was

assumed that if they knew the secret knock, they were someone who could be trusted.

Port knocking works in much the same way, only the “secret knock” is actually a series of

connection attempts to closed ports, and the door is actually a specific port that is to be

opened.

 At this point, the concept of port knocking might seem like a contradiction in

terms. The goal is to design a system that allows authentication with a remote machine by

way of communication across a series of ports, but these ports are closed, preventing all

 8

communication. This is exactly the problem for which port knocking provides such an

interesting solution. Many systems that use a firewall include options for logging

connection attempts to closed ports [3]. By enabling these options, it becomes possible to

communicate with the server by way of log entries. It is not the log entry that is

interesting, but the information it contains. From these entries, the server can retrieve the

IP address of the machine initiating the connection attempt, and the port it is trying to

connect to. If a sequence of port numbers can be constructed to encode some desired

information, it will be possible to send that information to a machine which initially may

not even appear to exist on the network. Furthermore, if a server can be configured in

such a way that it will interpret this information as a command to open a specific port,

then a basic port knocking system will be in place.

2.0: Goals

 The primary goal for this research project has been to design a port knocking

system written in C. The most readily available example of the potential of port knocking

is Martin Krzywinski's knockclient and knockdaemon . Krzywinski's software is

presented as a proof-of-concept design, written in Perl [1]. While Perl is clearly superior

to C in terms of its text parsing capabilities and concise code, the goal is to design a

compiled solution, as opposed to interpreted, that can eventually become an efficient

client/server port knocking system.

 The secondary goal for this project is to implement port knocking in such a

way as to be secure in the event of malicious users monitoring network traffic. In other

words, the data that is being communicated to the server should be encrypted within the

sequence of port numbers itself. With such encryption in place, even if someone manages

to observe the knock sequence and recreate it, they will still only be able to open the

 9

chosen port (a value which will be unknown to them) and it will only be open to traffic

originating from a chosen IP address (also unknown to them).

3.0: Implementation

 The design of the client and server components of this project was done in a

fairly platform-specific way. The client code, knockc.c , was primarily developed and

tested on a machine running Windows 2000 Professional under the Cygwin Linux

emulation environment. This code was compiled and tested under both Cygwin Linux and

FreeBSD 4.8. The server code, knockd.c , was developed on a FreeBSD 4.8 machine

running the firewall package ipfilter and was designed with this platform in mind.

Although at this time knockd has only been tested on FreeBSD 4.8, it was designed in

such as way as to ease future work in making the code platform-independent, a topic

addressed in Future Work.

3.1: The Client, knockc

 The first key component needed to design an effective port knocking system

is the client program, the part that will do the knocking. The client designed for this

project, knockc , begins by prompting the user for a source host, a destination host, a port

number, an offset, an action value, and an encryption password. Host names can be

entered either in the form of a domain name (i.e. domain.name.com) or an IP address (i.e.

130.184.92.77), as they will ultimately be resolved to an IP address. The client, upon

resolving the source hostname, is left with an IP address which is composed of 4 1-byte

values, each with a possible range of 0 – 255. The port number, on the other hand, has a

possible range of 0 – 65,535, which makes it a 2-byte value. By breaking this value up

into its upper 8 bits and lower 8 bits, it can be represented by two 1-byte values. Finally,

 10

the action value tells the server whether the requested port should be opened or closed.

The data now consists of 7 bytes, which can then be mapped into characters,

as there are 256 total characters represented in the extended ASCII character table (see

Appendix C). This resulting 7-byte character string is then input into an OpenSSL library

function BF_ecb_encrypt() , which implements the Blowfish encryption algorithm [7].

BF_ecb_encrypt() then takes the 7-byte character string, which has been padded with

null characters to 8 bytes (as the Blowfish algorithm must operate on 8-byte chunks of

data), and produces an encrypted 8-byte character string representing the input

information. The client then takes this encrypted string, and by reversing the conversion

process used above, stores each of the 8 characters of this string as an integer value with

range 0 – 255. Finally, the offset is added to each of these values, making the ports fall on

a specific range of 256 ports to which the server will be paying special attention. Once

this sequence of port numbers has been constructed, the client performs the final task of

making connection attempts to each of these ports on the remote host.

3.2: The Server, knockd

 The second key component of a viable port knocking system is the server,

the program which receives the knocks from the client and interprets them as commands

to open ports in the firewall, execute system calls, or take other actions. The goal of the

server, knockd , is for it to successfully perform four primary tasks: log monitoring,

retrieval and storage of port knocks, decryption of completed knock sequences, and

firewall modification.

 The first task, log file monitoring, ties back to the firewall option mentioned

earlier. For a port knocking solution to be effective, the system must be set up to log all

connection attempts to closed ports, specifically, the range of 256 ports which have been

 11

designated to receive knocks. Log entries such as this on the FreeBSD 4.8 operating

system will appear as:

Apr 13 03:21:08 planb /kernel: Connection attempt to TCP 192.168.1.1:90
from 192.168.1.2:3120
Apr 13 03:21:09 planb /kernel: Connection attempt to TCP 192.168.1.1:87
from 192.168.1.2:3123

In the sample entries above, it is indicated that the client located at IP address 192.168.1.2

attempted to connect to ports 90 and 87 on the server located at IP address 192.168.1.1.

By creating a regular expression to match against these types of log entries ..

^.+Connection attempt to TCP [0-9.]+:([0-9]+) from ([0-9.]+):[0-9]+

... the server will be able to separate these entries from the log file. But first, there must be

some selectivity about which of these entries will be processed. Older log entries cannot

be reevaluated every time the log file is checked. Only those entries which have been

recently appended to the log file should be processed.

knockd begins by calculating the initial MD5 hash of the log file with the

function MD5File() . MD5 is an iterative one-way hash function that takes an arbitrary

length string and calculates a 128-bit hash value for that data [6]. In other words, MD5

generates a unique digital “fingerprint” based on the data currently stored in the log file.

knockd then sets the log file pointer to the end of the file, which will tell it where to begin

reading once log entries have been appended to the log file. By recalculating the MD5

hash at regular intervals, it is possible to detect when entries have been appended to the

log file, and promptly search this new data for entries matching the regular expression.

 The use of regular expressions allows the storage of portions of a matched

string. This is done by way of the parenthesis operators. In the regular expression above,

the substrings that are being stored are the IP address from which the connection attempt

originated, ([0-9.]+) , and the port which that machine was attempting to connect to,

([0-9]+) . Now that these pieces of data can be retrieved on the server side, there must be

a way to store them until they are ready for processing.

 12

 The method used for storing this incoming data was a linked list of simple

structures. These structures, designated struct hostdata , consist of the following

fields:

struct hostdata{
char originIP[16];
unsigned char blf_in[MAXNUMOFKNOCKS];
unsigned char blf_out[MAXNUMOFKNOCKS];
unsigned short int knocks_enc[MAXNUMOFKNOCKS];
unsigned short int knocks_dec[MAXNUMOFKNOCKS];
int knocksreceived;
struct hostdata *next;
time_t timestamp;

};

The IP address which a particular set of knocks originated from is stored in

the field originIP[] . The encoded knock sequence is stored in the array knocks_enc[

] , and is indexed by the integer value knocksreceived . This value is used to add the port

numbers to the array as they are received, and is used to detect when a knock sequence

has been completed.

 Once a complete knock sequence has been received, it is ready to be

decrypted. This is done by first subtracting the offset from each port value in order to

produce the original sequence of values generated by the client. Next, each integer port

value is converted into its corresponding ASCII character. The 8-byte string formed by

these characters, blf_in[] , is then decrypted with the same function used for

encrypting, BF_ecb_encrypt() , and the same password used for encrypting on the

client side (the user is prompted for this password when knockd is started). The decrypted

string is then stored in the buffer blf_out[] . These decrypted characters are then

converted back to integer values and reassembled into the source IP address, requested

port number, and action value.

 At this point, the port knocking server now has all the information it needs in

order to modify the firewall rules. This is done with the function

modify_ipfilter_firewall() , which utilizes the fact that the program being used to

 13

create the firewall, ipf , can take as input multiple rule files when it creates a firewall.

This allows the existing firewall rule file to remain untouched, and an auxiliary rule file,

ipf.rules.knockd , to store the firewall rules that are generated by knockd . If the client

system is requesting that the server open a port for access, the server scans the auxiliary

log file to see if such a rule already exists. The server then adds this rule if it doesn’t

exist, and ignores the request if it does. If the client is requesting to close a port, the

server looks for the rule opening this port, and deletes it. The server ignores the request if

such a rule is not found. Once this auxiliary file has been successfully modified, the

server then executes a system call:

ipf -Fa -f ./ipf.rules.knockd -f /etc/ipf.rules

This command rebuilds the firewall based on the existing firewall rules and the auxiliary

firewall rule file. Once the server has completed this task, it frees the memory allocated to

storing the data from the client, and then continues monitoring the log file for changes.

4.0: Analysis

 The programs knockc and knockd , in their current state, provide a simple

yet effective port knocking solution. knockc allows the user to construct an 8-byte port

knock sequence once the requisite information has been supplied. This enables an

authenticated user to modify the firewall of a remote machine in order to access services

on that machine that were hidden to them. knockd enables a system administrator to hide

running services, only allowing selective access to those services by way of the client,

knockc . Overall, this port knocking project holds great potential for becoming another

layer of security to defend critical systems.

Some argue that port knocking takes a “security through obscurity” approach

to protect computer systems [1, 4, 5]. Security through obscurity prevents access by

 14

hiding something in a way that makes discovery unlikely, but not impossible. An example

of this would be storing money in a shoebox, and then burying the shoebox on a huge plot

of land. Opponents of security through obscurity argue that the security of the money

only depends on the thief’s willingness to find it, which is true. The more desirable option

for implementing security would be to place the money in a safe, place the safe out in the

open for anyone to access, and making the details of its inner workings known to all. If

the safe was so secure that thieves, armed with this knowledge, could not crack it, then it

could be considered truly secure.

The main concern brought up by critics of port knocking is that of replay

attacks [4, 5]. That is, if a malicious user eavesdrops on a knock sequence, it is trivial for

them to reproduce the sequence, thereby reproducing the actions invoked on the server.

knockd addresses this problem in two ways.

First, the information which is transmitted to the server is encrypted within

the sequence of knocks itself. This information is encrypted and decrypted with a

password known only to the client and server. Malicious users are therefore unable to

construct their own knock sequences for the server, because without the proper password,

their encrypted data will only come out as garbage when decrypted by the server.

Second, knockd is designed to only allow access to the machine whose IP

address is encrypted in the knock sequence. This is an important feature, as the knock

sequence generated by the client is easily reproducible. However, knockd is implemented

in a way that defeats such “replay attacks.” Even if a malicious user were to replay the

knock sequence, they would only be causing the server to react in the way intended by the

original user. That is, the server would only be opening a port to traffic from an IP

address chosen by the original user. Since these values are encrypted within the knock

sequence, the malicious user has no way of knowing the nature of the access being

 15

granted, and their replayed knock will appear to not have any effect at all.

 Another issue that a reliable port knocking solution must address is Denial-

of-Service (DoS) attacks. With knockd , the most likely target of a DoS attack would be

the system memory. When knockd receives a port knock from a new host, it allocates a

structure of type struct hostdata in order to store information pertinent to that specific

host. There exists the possibility that a malicious user could flood the server with

fabricated port knocks, so that each new knock appears to originate from a new host. The

eventual result of such an attack would be the exhaustion of system memory, and most

likely system failure.

knockd is implemented in such a way as to largely mitigate the effects of

this type of attack. When a structure is allocated for a new host, it is given a timestamp

using the variable time_t timestamp . This timestamp is then periodically checked (via

the function check_timestamps()) to see if a predetermined amount of time has

elapsed without that host completing a full knock sequence. If this structure has expired,

the memory allocated to it is freed and the program continues as normal. It is likely still

possible that with a large enough timeout value and a powerful enough DoS attack, the

system memory could still be exhausted. However, the current method seems sufficient

for the scope of this project. More sophisticated methods for warding off such attacks will

be investigated in future versions of this software.

One final issue that should be addressed concerning any port knocking

implementation is that of log file pollution. Since a single knock sequence causes 8

connection attempt entries to be appended to the system logs, regular use of port

knocking can defeat the purpose of log files by bloating them with useless information.

There are a few possible solutions to this problem which will be discussed in the

following section.

 16

5.0: Future Work

 The code developed for this project in the files knockc.c and knockd.c ,

while providing a working port knocking solution, leaves much room for future

expansion and enhancement. The first and likely most obvious topic for future work is

that of platform independence. The client program has been successfully compiled and

tested on both Cygwin Linux and FreeBSD 4.8. The majority of future work done on

knockc will most likely involve testing on a range of UNIX/Linux platforms, and

modifying the code so that it works correctly on all these platforms. In addition, knockc

will be modified to accept all necessary values as command-line arguments, in addition to

its existing interactive user-input mode.

Other work to consider would be designing a version of this program for the

WindowsNT/2000/XP operating system. This would probably require a significant

amount of modification to the network code, as well as the design of a graphical user

interface (GUI). Finally, the most interesting possibility for this project would be the

design of a web-based port knocking client, most likely written in PHP. Such a client

would be more flexible than a command-line or GUI based client, as it would be

operating system independent and simpler to access and use.

 Platform independence for knockd will require much more work than that of

the client, as the server uses more specialized libraries and, in places, has a very system-

specific design. First among considerations is the use of the libraries std.h and

daemon.h . These are third-party function libraries that come as part of the package

libslack . The porting of knockd to other platforms would require either those platforms

to support libslack , or the writing of custom code that would give knockd functionality

equivalent to that offered by libslack .

 17

In addition, knockd needs to be modified to support a number of different

firewalls. Fortunately, the design of knockd was done with this future expansion in mind.

Currently, knockd is only capable of modifying firewalls implemented with the ipfilter

software package. It does this via the function modify_ipfilter_firewall() . It would

not be difficult to implement functions that could modify firewalls based on other

software packages, and allow the user to specify which function knockd should use.

One particularly interesting concept which arose out of the design of this

project is that of granting access to a remote third party. Currently, knockc and knockd

do not distinguish between the client IP address extracted from the log entries and the IP

address decrypted from the port knock sequence. knockc is designed in such a way that it

allows the user to specify which IP address knockd will be granting access to. Thus, an

authenticated user can grant access to whomever they choose. There are a number of

reasons for and against this capability, and so knockd will eventually allow the

administrator to specify whether or not this behavior will be allowed.

 Another interesting possibility for future work with port knocking is the

expansion of what the server can do when evaluating a knock sequence. Currently, the

port knocking project is built around the idea that when a valid knock sequence is

received, a port is either opened or closed in the firewall. This functionality could be

expanded to associate a predefined knock sequence with an arbitrarily defined system

action. One possible way to do this would be to use values in the source IP address which

are beyond the value 255. We could then implement a user-written rule file which the

server would check when evaluating a knock sequence. If it detects values that are invalid

in the source IP address, it could be designed to check this rule file for a matching

sequence, and then execute the command that the user has associated with that knock

sequence.

 18

 Solving the problem of log file pollution is another area in which knockd has

much room for growth. Possible solutions to this would most likely require a

modification of the firewall, and not the port knock server itself. The most appealing

solution would be to modify the firewall logging in such a way that it would log

connection attempts that fall within the chosen 256 port range to a separate log file, and

then modifying the port knock server to only monitor that special log file. Other

possibilities might involve the removal of connection attempt entries from the log file

once they have been processed by knockd .

Finally, authentication is an area that needs further development. A more

robust password management system would be a significant step towards the use of

knockd in a multi-user environment. Currently, knockc and knockd both rely on a shared

password used for encryption and decryption. While this works, it does not afford much

flexibility. With a multi-user, multi-password system in place, a system administrator

could define which ports a given password is allowed to open. A system such as this is

certainly feasible, but will likely require substantial development.

6.0: Conclusion

 This project offers a successful demonstration of the potential security

benefits to be gained by implementing a fully-functional port knocking system. While

knockc and knockd offer a working solution, they are far from their full potential and still

need much enhancement before they can be deployed as a trustworthy security

enhancement.

 Currently, preparations are under way to release all code written for this

project as open source software under the GNU General Public License (GPL). The

current plan is to host this code on the website www.sourceforge.net, a popular repository

 19

for open source software. The project is registered under the name “Port Knocking,” and

it is hoped that the availability of this code will attract other programmers to contribute

their ideas and talent.

 The work done for this project will hopefully lay a solid foundation for

future work towards developing a robust, viable port knocking implementation. The

ultimate goal for this project is for it to develop into a viable port knocking solution that

administrators can rely on to enhance the security of their systems. While it is still only in

the early stages of that development, the potential for such an accomplishment certainly

exists in this project, and will remain a driving force in my future work in this subject.

 20

Appendix A: Source Code for knockc.c

//knockc v0.1 by Matt Doyle

// #INCLUDES
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <ctype.h>
#include <pwd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <openssl/blowfish.h>

// #DEFINES
#define MAXHOSTNAMESIZE 51 // defines maximum hostname string length
#define MAXNUMOFKNOCKS 8 // defines max possible # of knocks
#define MAXPASSWDSIZE 128 // defines maximum password length

// GLOBALS
char password[MAXPASSWDSIZE];

// START MAIN
int main(void){

// VARIABLES
int sockFileDesc; // socket file descriptor
int count; // loop counter
unsigned short int port; // remote port to open
unsigned short int upper = 0; // upper byte of port number
unsigned short int lower = 0; // lower byte of port number
unsigned short int action = 0; // determines open or close
unsigned short int knocks_enc[MAXNUMOFKNOCKS]; // encrypted

port knock sequence
unsigned short int offset = 0; // port range offset
char remotehost[MAXHOSTNAMESIZE]; // user-input remote hostname
char localhost[MAXHOSTNAMESIZE]; // user-input local hostname
char portstring[6]; // user-input knock port
char offsetstring[6]; // user-input offset
char clientIP[16]; // resolved IP address of client
char serverIP[16]; // resolved IP address of server
unsigned char blf_in[MAXNUMOFKNOCKS]; // string to be encrypted
unsigned char blf_out[MAXNUMOFKNOCKS]; // encrypted string
struct sockaddr_in serverAddress; // used to define socket
struct sockaddr_in clientAddress; // used to define socket
struct hostent *servername; // used for server name lookup
struct hostent *clientname; // used for server name lookup
BF_KEY bfkey;

 21

// CLEAR OUT BUFFERS
memset(remotehost, '\0', sizeof(remotehost));
memset(localhost, '\0', sizeof(localhost));
memset(portstring, '\0', sizeof(portstring));
memset(offsetstring, '\0', sizeof(offsetstring));
memset(blf_in, '0', sizeof(blf_in));
memset(blf_out, '\0', sizeof(blf_out));
memset(clientIP, '\0', sizeof(clientIP));
memset(serverIP, '\0', sizeof(serverIP));
memset(knocks_enc, 0, sizeof(knocks_enc));

// PROMPT USER FOR LOCAL HOSTNAME OR IP
printf("\nEnter local hostname or IP: ");
fgets(localhost, MAXHOSTNAMESIZE, stdin);

// PROMPT USER FOR REMOTE HOSTNAME OR IP
printf("Enter remote hostname or IP: ");
fgets(remotehost, MAXHOSTNAMESIZE, stdin);

// PROMPT USER FOR PORT
printf("Enter remote port to open/close: ");
fgets(portstring, 6, stdin);

// PROMPT USER FOR OFFSET
printf("Enter port range offset: ");
fgets(offsetstring, 6, stdin);

// PROMPT USER FOR PASSWORD
strcpy(password, getpass("Enter encryption password: "));

// PROMPT USER FOR OPEN/CLOSE
printf("Enter (1) to open port, (0) to close: ");
action = getc(stdin);
if((unsigned char) action == '1')

action = 1;
else action = 0;

// CHECKS FOR NULL STRING INPUT
if((strlen(portstring) == 0) || (portstring[0] == '\n')){

printf("ERROR: No ports specified\n\n");
exit(0);

}

// CHECKS FOR ZERO OFFSET
if((strlen(offsetstring) == 0) || (offsetstring[0] == '\n'))

offset = 0;

// GET RID OF NEWLINES
count = 0;
while(count <= MAXHOSTNAMESIZE){

if(remotehost[count] == '\n')
remotehost[count] = '\0';

 22

if(localhost[count] == '\n')
localhost[count] = '\0';

count++;
}
count = 0;
while(count < 6){

if(portstring[count] == '\n')
portstring[count] = '\0';

if(offsetstring[count] == '\n')
offsetstring[count] = '\0';

count++;
}

// GET THE PORT NUMBER
port = (unsigned short int) strtol(portstring, NULL, 10);

// GET THE OFFSET
if((offset = (unsigned short int) strtol(offsetstring, NULL,

10)) > 65279){
printf("ERROR: Port offset > 65279\n");
exit(0);

}

// CLIENT AND SERVER NAME LOOKUP
clientname = gethostbyname(localhost);
if(clientname == NULL){

herror("\nERROR");
exit(0);

}
memcpy((char *)&clientAddress.sin_addr.s_addr, clientname-

>h_addr_list[0], clientname->h_length);
memcpy(clientIP, inet_ntoa(clientAddress.sin_addr), 15);
printf("\nSource: %s (%s)\n", clientname->h_name, clientIP);

servername = gethostbyname(remotehost);
if(servername == NULL){

herror("\nERROR");
exit(0);

}
memcpy((char *)&serverAddress.sin_addr.s_addr, servername-

>h_addr_list[0], servername->h_length);
memcpy(serverIP, inet_ntoa(serverAddress.sin_addr), 15);
printf("Destination: %s (%s)", servername->h_name, serverIP);

// ENCRYPT THE KNOCK SEQUENCE
blf_in[0] = (unsigned char) strtol(strtok(clientIP, "."), NULL,

10);
blf_in[1] = (unsigned char) strtol(strtok('\0', "."), NULL, 10);
blf_in[2] = (unsigned char) strtol(strtok('\0', "."), NULL, 10);
blf_in[3] = (unsigned char) strtol(strtok('\0', "."), NULL, 10);
upper = port;
upper = upper >> 8;
lower = port;
lower = ((lower << 8) >> 8);
blf_in[4] = (unsigned char) upper;
blf_in[5] = (unsigned char) lower;
blf_in[6] = (unsigned char) action;

 23

BF_set_key(&bfkey, sizeof(password), password);
BF_ecb_encrypt(blf_in, blf_out, &bfkey, BF_ENCRYPT);

knocks_enc[0] = ((unsigned short int) blf_out[0]) + offset;
knocks_enc[1] = ((unsigned short int) blf_out[1]) + offset;
knocks_enc[2] = ((unsigned short int) blf_out[2]) + offset;
knocks_enc[3] = ((unsigned short int) blf_out[3]) + offset;
knocks_enc[4] = ((unsigned short int) blf_out[4]) + offset;
knocks_enc[5] = ((unsigned short int) blf_out[5]) + offset;
knocks_enc[6] = ((unsigned short int) blf_out[6]) + offset;
knocks_enc[7] = ((unsigned short int) blf_out[7]) + offset;

// START KNOCKING
count = 0;
printf("\nPorts: ");

while((knocks_enc[count] != 0) && (count < MAXNUMOFKNOCKS)){

// OPEN SOCKET
sockFileDesc = socket(AF_INET, SOCK_STREAM, 0);
if(sockFileDesc == -1){

perror("\nERROR");
exit(0);

}

// CONNECT TO REMOTE HOST
serverAddress.sin_family = AF_INET;
serverAddress.sin_port = htons(knocks_enc[count]);
//memcpy((char *)&serverAddress.sin_addr.s_addr,

servername->h_addr_list[0], servername->h_length);

if(connect(sockFileDesc, (struct sockaddr *)
&serverAddress, sizeof(serverAddress)) < 0){

printf("%d ", ntohs(serverAddress.sin_port));
}
else{

printf("\nERROR: Connection made on port
%d\n\n", ntohs(serverAddress.sin_port));

close(sockFileDesc);
exit(0);

}

close(sockFileDesc);
count++;

} // END WHILE

// FINISH UP
printf("\nSequence complete\n\n");
return 0;

}

 24

Appendix B: Source Code for knockd.c

//knockd v0.1 by Matt Doyle

// #INCLUDES
#include <slack/std.h> // from libslack (libslack.org), used for
daemonizing
#include <slack/daemon.h> // from libslack (libslack.org), used for
daemonizing
#include <stdio.h>
#include <stdlib.h>
#include <regex.h> // regular expression support
#include <pwd.h>
#include <unistd.h>
#include <sys/types.h>
#include <md5.h> // md5 support
#include <openssl/blowfish.h> // blowfish support
#include <time.h>

// #DEFINES
#define NUMOFSUBEXPS 3 // number of subexpressions in our regular
expression
#define MAXNUMOFKNOCKS 8 // defines maximum possible # of knocks
#define MAXPASSWDSIZE 128 // defines maximum password length

// STRUCTURE DEFINITIONS
struct hostdata{

char originIP[16];
unsigned char blf_in[MAXNUMOFKNOCKS]; // encrypted string

produced from knock sequence
unsigned char blf_out[MAXNUMOFKNOCKS]; // decrypted string
unsigned short int knocks_enc[MAXNUMOFKNOCKS]; // encrypted

knock sequence received from IP thus far
unsigned short int knocks_dec[MAXNUMOFKNOCKS]; // decrypted

knock sequence
int knocksreceived; // indicates how many knocks have been

received from this host
struct hostdata *next; // used to make linked list out of host

nodes
time_t timestamp; // indicates time we started receiving knocks

from this host
};

// FUNCTION PROTOTYPES
void init_hostdata(struct hostdata *host);
void eval_sequence(struct hostdata *host, BF_KEY bfkey, unsigned short
int offset);
void free_node(struct hostdata *host);
struct hostdata *add_host_to_list(struct hostdata *host);
struct hostdata *host_exists(char *remotehost);
void check_timestamps(time_t window);
void modify_ipfilter_firewall(struct hostdata *host);

 25

// GLOBALS
char password[MAXPASSWDSIZE]; // decryption password
struct hostdata *hosts; // linked list of host nodes

// START MAIN
int main(int argc, char *argv[]){

// VARIABLES
unsigned int sleeptime = 1; // # of seconds to wait between md5

hash checks
char md5hash[33]; // stores md5 hash
char logfile[50]; // log file name
char logline[200]; // stores lines from log file as we pull

them out
char remotehost[16]; // stores subexpression from regexp match
char localport[6]; // stores subexpression from regexp match
char password[MAXPASSWDSIZE]; // encryption/decryption password
regex_t regexp; // stores compiled regular expression
regmatch_t subexps[NUMOFSUBEXPS]; // stores matched

subexpressions of our regexp
fpos_t position; // stores file pointer
FILE *logfileptr;
BF_KEY bfkey;
struct hostdata *currenthost; // pointer to current host node

being dealt with
time_t window = 10; // amount of time to receive all knocks

from a host before freeing the node // FIX!
unsigned short int offset = 0; // port range offset

// CLEAR BUFFERS
memset(md5hash, '\0', sizeof(md5hash));
memset(logfile, '\0', sizeof(logfile));
memset(logline, '\0', sizeof(logline));
memset(remotehost, '\0', sizeof(remotehost));
memset(localport, '\0', sizeof(localport));
memset(password, '\0', sizeof(password));

// INITIALIZE
memcpy(logfile, "/var/log/messages", sizeof(logfile)-1);
strcpy(password, getpass("Enter decryption password: "));
BF_set_key(&bfkey, sizeof(password), password);
logfileptr = NULL;
hosts = NULL;

// PROCESS COMMAND-LINE ARGUMENTS
if(argc > 2){

printf("ERROR: usage: %s OR %s offset\n", argv[0],
argv[0]);

exit(0);
}
else if(argc == 2){

if((offset = (unsigned short int) strtol(argv[1], NULL,
10)) > 65279){

printf("ERROR: Port offset > 65279\n");
exit(0);

}

 26

}

// GET INITIAL MD5 HASH OF LOGFILE
if(MD5File(logfile, md5hash) == NULL){

printf("ERROR: Log file %s not found.\n", logfile);
exit(0);

}

// OPEN LOG FILE FOR READING
if((logfileptr = fopen(logfile, "r")) == NULL){

perror("ERROR");
exit(0);

}

// COMPILE REGULAR EXPRESSION
if(regcomp(®exp, "^.+Connection attempt to TCP [0-9.]+:([0-

9]+) from ([0-9.]+):[0-9]+", REG_EXTENDED) != 0){
printf("ERROR: Unable to compile regular

expression.\n");
exit(0);

}

// SAVE FILE POINTER FROM INITIAL EOF
fseek(logfileptr, 0, SEEK_END);
fgetpos(logfileptr, &position);
rewind(logfileptr);

// START MAIN WHILE LOOP
printf("Running...\n\n");
while(1){

// IF LOG FILE UNCHANGED, SLEEP THEN LOOP AGAIN
if(strcmp(MD5File(logfile, NULL), md5hash) == 0){

check_timestamps(window);
sleep(sleeptime);
continue;

}

fsetpos(logfileptr, &position);

// LOOP OVER ALL LOG FILE LINES FROM SAVED POINT ON
while(!feof(logfileptr)){

check_timestamps(window);
memset(logline, '\0', sizeof(logline));
fgets(logline, sizeof(logline), logfileptr);

if(regexec(®exp, logline, NUMOFSUBEXPS,
subexps, 0) == 0){

memcpy(localport,
logline+subexps[1].rm_so, (subexps[1].rm_eo-subexps[1].rm_so));

memcpy(remotehost,
logline+subexps[2].rm_so, (subexps[2].rm_eo-subexps[2].rm_so));

 27

printf("%s knocking port %s\n",
remotehost, localport);

// ADD HOST ENTRY IF IT DOESN'T EXIST,
UPDATE IF IT DOES

if((currenthost =
host_exists(remotehost)) == NULL){

currenthost =
malloc(sizeof(struct hostdata));

init_hostdata(currenthost);
hosts =

add_host_to_list(currenthost);

strcpy(currenthost->originIP,
remotehost);

currenthost-
>knocks_enc[currenthost->knocksreceived] = (unsigned short int)
strtol(localport, NULL, 10
);

currenthost->knocksreceived++;
}
else{

currenthost-
>knocks_enc[currenthost->knocksreceived] = (unsigned short int)
strtol(localport, NULL, 10
);

currenthost->knocksreceived++;
if(currenthost->knocksreceived

== MAXNUMOFKNOCKS)

eval_sequence(currenthost, bfkey, offset);
}

memset(localport, '\0',
sizeof(localport));

memset(remotehost, '\0',
sizeof(remotehost));

memset(subexps, '\0', sizeof(subexps));

} // END IF

else continue;

} // END WHILE

// SAVE NEW LOG FILE HASH AND NEW EOF POINTER
MD5File(logfile, md5hash);
fseek(logfileptr, 0, SEEK_END);
fgetpos(logfileptr, &position);

} // END WHILE

// CLEAN UP
fclose(logfileptr);
return 0;

} // END MAIN

 28

/* ********** FUNCTION DEFINITIONS ********** */

void init_hostdata(struct hostdata *host){

memset(host->originIP, '\0', sizeof(host->originIP));
memset(host->blf_in, '0', sizeof(host->blf_in));
memset(host->blf_out, '\0', sizeof(host->blf_out));
memset(host->knocks_enc, 0, sizeof(host->knocks_enc));
memset(host->knocks_dec, 0, sizeof(host->knocks_dec));
host->knocksreceived = 0;
host->next = NULL;
host->timestamp = time(NULL);

}

struct hostdata *add_host_to_list(struct hostdata *host){

// VARIABLES
struct hostdata *current;

current = hosts;
if(current == NULL)

return host;
while(current->next != NULL){

current = current->next;
}
current->next = host;

return hosts;
}

struct hostdata *host_exists(char *remotehost){

// VARIABLES
struct hostdata *current;

current = hosts;
while(current != NULL){

if(strcmp(current->originIP, remotehost) == 0)
return current;

current = current->next;
}

return NULL;
}

void eval_sequence(struct hostdata *host, BF_KEY bfkey, unsigned short
int offset){

// VARIABLES
unsigned short int upper = 0;
unsigned short int lower = 0;

printf("\nKnock sequence: %d %d %d %d %d %d %d %d\n", host-
>knocks_enc[0], host->knocks_enc[1], host->knocks_enc[2], host-

 29

>knocks_enc[
3], host->knocks_enc[4], host->knocks_enc[5], host->knocks_enc[6], host-
>knocks_enc[7]);

host->blf_in[0] = ((unsigned char) host->knocks_enc[0]) -
offset;

host->blf_in[1] = ((unsigned char) host->knocks_enc[1]) -
offset;

host->blf_in[2] = ((unsigned char) host->knocks_enc[2]) -
offset;

host->blf_in[3] = ((unsigned char) host->knocks_enc[3]) -
offset;

host->blf_in[4] = ((unsigned char) host->knocks_enc[4]) -
offset;

host->blf_in[5] = ((unsigned char) host->knocks_enc[5]) -
offset;

host->blf_in[6] = ((unsigned char) host->knocks_enc[6]) -
offset;

host->blf_in[7] = ((unsigned char) host->knocks_enc[7]) -
offset;

BF_ecb_encrypt(host->blf_in, host->blf_out, &bfkey, BF_DECRYPT);

host->knocks_dec[0] = (unsigned short int) host->blf_out[0];
host->knocks_dec[1] = (unsigned short int) host->blf_out[1];
host->knocks_dec[2] = (unsigned short int) host->blf_out[2];
host->knocks_dec[3] = (unsigned short int) host->blf_out[3];
upper = host->blf_out[4] << 8;
lower = (unsigned short int) host->blf_out[5];
host->knocks_dec[4] = upper | lower;
host->knocks_dec[6] = (unsigned short int) host->blf_out[6];

//printf("Decrypted IP: %u.%u.%u.%u\n", host->knocks_dec[0],
host->knocks_dec[1], host->knocks_dec[2], host->knocks_dec[3]);

printf("Action: ");
if(host->knocks_dec[6] == 1) printf("Open ");
else if(host->knocks_dec[6] == 0) printf("Close ");
else printf("NO ACTION ");
printf("port %d to IP address %d.%d.%d.%d\n\n", host-

>knocks_dec[4], host->knocks_dec[0], host->knocks_dec[1], host-
>knocks_dec[2], ho
st->knocks_dec[3]);

modify_ipfilter_firewall(host);
free_node(host);

}

void free_node(struct hostdata *host){

// VARIABLES
struct hostdata *previous;
struct hostdata *current;

if(host == hosts){ // if the node to free is the first in the
list

current = host;
hosts = host->next;
free(current);

}

 30

else{
previous = hosts;
current = hosts->next;
while(current != host){

previous = current;
current = current->next;

}
if(current->next != NULL)

previous->next = current->next;
else

previous->next = NULL;

free(current);
}

}

void check_timestamps(time_t window){

// VARIABLES
struct hostdata *current;

current = hosts;
while(current != NULL){

if(difftime(time(NULL), current->timestamp) >= window)
free_node(current);

current = current->next;
}

}

void modify_ipfilter_firewall(struct hostdata *host){

// VARIABLES
int ruleexists = 0;
int ruledeleted = 0;
char firewallrule[74]; // stores string of our firewall rule
char filebuffer[74]; // stores lines as they are read out of

rule file
char buffer[6]; // storage buffer
regex_t regexp;
FILE *rulefile;
FILE *tempfile;

// INITIALIZE BUFFERS
memset(firewallrule, '\0', sizeof(firewallrule));
memset(buffer, '\0', sizeof(buffer));

// COMPOSE FIREWALL RULE STRING
strncat(firewallrule, " pass in quick on sis0 proto tcp from ",

38);
sprintf(buffer, "%d.%d.%d.%d", host->knocks_dec[0], host-

>knocks_dec[1], host->knocks_dec[2], host->knocks_dec[3]);
strncat(firewallrule, buffer, 15);
strncat(firewallrule, " to any port = ", 15);
memset(buffer, '\0', sizeof(buffer));
sprintf(buffer, "%d\n", host->knocks_dec[4]);
strncat(firewallrule, buffer, 15);

 31

// COMPILE REGULAR EXPRESSION
if(regcomp(®exp, firewallrule, REG_EXTENDED) != 0){

printf("ERROR: Unable to compile regular
expression.\n");

exit(0);
}

// OPEN KNOCKD FIREWALL RULES FILE
if((rulefile = fopen("./ipf.rules.knockd", "r+")) == NULL){

printf("ERROR: Unable to open ipf.rules.knockd\n");
exit(0);

}

// OPEN TEMPORARY FILE
if((tempfile = fopen("./temp", "w")) == NULL){

printf("ERROR: Unable to open temporary file.\n");
exit(0);

}

// IMMEDIATELY INSERT RULE IF FILE EMPTY AND ACTION IS TO OPEN
if(feof(rulefile) && host->knocks_dec[6] == 1)

fprintf(rulefile, firewallrule);

else if(feof(rulefile) && host->knocks_dec[6] == 0)
{} // do nothing

// LOOP THROUGH OUR RULE FILE
else{

while(!feof(rulefile)){

fgets(filebuffer, 74, rulefile);
filebuffer[73] = '\0';

// IF RULE MATCHES AND ACTION IS TO OPEN...
if((regexec(®exp, filebuffer, 0, NULL, 0) ==

0) && (host->knocks_dec[6] == 1)){
ruleexists = 1;
break;

}

// IF RULE DOESN'T MATCH AND ACTION IS TO
OPEN...

else if((regexec(®exp, filebuffer, 0, NULL,
0) != 0) && (host->knocks_dec[6] == 1))

continue;

// IF RULE MATCHES AND ACTION IS TO CLOSE...
else if((regexec(®exp, filebuffer, 0, NULL,

0) == 0) && (host->knocks_dec[6] == 0)){
ruledeleted = 1;
continue;

}

// IF RULE DOESN'T MATCH AND ACTION IS TO
CLOSE...

else if((regexec(®exp, filebuffer, 0, NULL,

 32

0) != 0) && (host->knocks_dec[6] == 0)){
fprintf(tempfile, filebuffer);
continue;

}

} // END WHILE

// APPEND RULE TO OPEN IF IT DOESN'T EXIST
if((ruleexists == 0) && (host->knocks_dec[6] == 1)){

fprintf(rulefile, firewallrule);
fclose(rulefile);
system("ipf -Fa -f ./ipf.rules.knockd -f

/etc/ipf.rules");
fclose(tempfile);

}

// DELETE RULE IF IT EXISTS AND ACTION IS TO CLOSE
else if((ruledeleted == 1) && (host->knocks_dec[6] ==

0)){

fclose(rulefile);
if(remove("./ipf.rules.knockd")){

printf("ERROR: Unable to delete rule
file.\n");

exit(0);
}

fclose(tempfile);
if(rename("./temp", "./ipf.rules.knockd")){

printf("ERROR: Unable to rename
file.\n");

exit(0);
}

system("ipf -Fa -f ./ipf.rules.knockd -f
/etc/ipf.rules");

}

} // END ELSE

}

 33

Appendix C: The Extended ASCII Character Chart

 34

 35

Appendix D: Related Work

 There are currently a number of port knocking systems in development. The

most comprehensive listing of these implementations can be found at

www.portknocking.org. The primary example is Krzywinski’s prototype port knocking

system written in Perl (http://www.portknocking.org/view/download/perl). Krzywinski’s

code is provided as a proof-of-concept, and is not intended for production environments.

Jon Snell has designed an experimental port knocking implementation using C

(http://www.e-normous.com/nerd/combo.c). A Java-based implementation, jPortKnock,

has been created and released for open source development

(http://freshmeat.net/projects/jportknock). Corciovei Aretius has developed a Python-

based client/server system for use with FreeBSD systems using the ipfw firewall package

(http://nemesisit.rdsnet.ro/len/misc/portknock.html).

 Judd Vinet recently released a client/server port knocking system, also

written in C (http://www.zeroflux.org/knock/). Vinet’s implementation is designed in a

way that maps system calls to static knock sequences.

Finally, there is an open source project on www.sourceforge.net called

Doorman (http://doorman.sourceforge.net). Doorman is a bit different from other port

knocking implementations in that it only listens for a single UDP packet with a valid

MD5 hash.

 36

Bibliography

1. Krzywinski, Martin. Port Knocking. <http://www.portknocking.org> March 2004.

2. Krzywinski, Martin. “Howto: Port Knocking.” Linux Journal. June 16, 2003.
 <http://www.linuxjournal.com> March 2004.

3. Lehey, Greg. The Complete FreeBSD. Walnut Creek: Walnut Creek CDROM, 1999.
 350-351.

4. Malda, Rob. “”Port Knocking” for Added Security.” Slashdot. February 5, 2004.
 <http://www.slashdot.org> February, 2004.

5. Malda, Rob. “Port Knocking in Action.” Slashdot. April 14, 2004.
 <http://www.slashdot.org> April, 2004.

6. Oppliger, Rolf. Security Technologies for the World Wide Web. Boston: Artech House,
 2000. 77-78.

7. Schneier, Bruce. Applied Cryptography. New York: Wiley, 1996. 336-339.

8. Sonnenreich, Wes, and Tom Yates. Building Linux and OpenBSD Firewalls. New
 York: Wiley, 2000. 50-52.

